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After iterations of development and testing, deploying a well-fit machine
learning model often feels like the final hurdle for an eager data science team. In
practice, however, a trained model is never final. This milestone marks just the
beginning of the perpetual maintenance race that is production machine
learning. This is because most machine learning models are static, but the world
we live in is dynamic. More specifically, the ability of a trained model to
generalize relies on an important assumption of stationarity - meaning the data
upon which a model is trained and tested are independent and identically
distributed (i.i.d). In real-world environments, this assumption is often violated,
as human behavior - and consequently the systems we aim to model - are

dynamically changing all the time.[1]

Introduction

Figure 1: Examples of machine learning tasks where the effects of

concept drift are prominent



Take, for instance, the impact of the COVID-19 pandemic on algorithm-driven
businesses like inventory management. Instacart’s model for forecasting in-
store product availability dropped from 93% to 61% accuracy, due to a drastic
change in shopping behavior as consumers stockpiled what previously were
infrequently purchased goods. The model was forced to adapt to this transitory
shift in its prior understanding of the world.

Not all changes are this sudden, though. Consider the task of maintaining an
email spam filtering service. The core technology consists of a text classification
model that picks up on keywords in email content to block spammers. Over
time, users will begin to manually report more messages as spam that are not
caught by the filter. In this adversarial environment, spammers are continuously
adjusting terminology to outwit the deployed spam filters, so models must
relearn what language constitutes the evolving concept of spam to remain
effective.

Or think about the job of forecasting energy consumption, in which historical
demand is just one piece of the puzzle. In practice, future demand is driven by a
slew of non-stationary forces - like climate fluctuations, population growth, or
disruptive clean energy tech - that necessitate both gradual and sudden domain
adaptation.

Domain Adaptation

Domain adaptation (a subcategory of transfer learning) is the ability to
apply an algorithm trained in one or more “source domains” to a different,
but related “target domain.” In domain adaptation, the source and target

domains share the same feature space, but different distributions.[2]

Changes in environmental conditions like these are referred to as concept drift,
and will cause the predictive performance of a model to degrade over time,
eventually making it obsolete for the task it was initially intended to solve.

https://fortune.com/2020/06/09/instacart-coronavirus-artificial-intelligence/


To combat this divergence between static models and dynamic environments,
teams often adopt an adaptive learning strategy that is triggered by the
detection of a drifting concept. Supervised drift detection is generally achieved
by monitoring a performance metric of interest (such as accuracy) and alerting a
retraining pipeline when the metric falls below some designated threshold.

While this strategy proves to be effective in theory, there are several limitations
that often prevent its use in practice. Namely, it requires immediate access to an
abundance of labels at inference time to quantify a change in system
performance - a requirement that may be cost-prohibitive, or even outright
impossible, in many real-world machine learning applications.

In this report, we explore broadly applicable approaches for dealing with
concept drift when labeled data is not readily accessible. We’ll start by defining
what we mean by concept drift and frame the limitations of supervised methods
for detecting it. Then, we’ll discuss why true unsupervised concept drift
detection is not possible, and explore several alternative methods for dealing
with it. Finally, we’ll share the results of our experiments with the proposed
methods, and wrap up with a discussion of considerations and limitations.

Figure 2: Production model performance will decay over time without

adaptation to drifting concepts



What is concept drift?
Most machine learning systems today operate in a batch paradigm; they probe a
historical data set to develop a model that reflects the world as it was at the
time of training. But, as we’ve seen, the world is always changing, and the
complex relationships that a model abstracts are also likely to change over time
- causing model performance to deteriorate, if not accounted for. This
phenomenon in which the statistical properties of a target domain change over

time is considered concept drift.[3]

Formally, concept drift between time  and  can be defined as:

where  denotes the joint probability distribution at time  between the set of
input variables  and the target variable . Since the joint probability can be
decomposed as the product of the probability of  and the conditional
probability of  given , changes in a data stream can therefore be
characterized by changes in the components of this relationship according to the
equation below.

This decomposition yields two underlying sources of drift - feature drift and real
concept drift.

Source 1: Feature Drift

Feature drift (also referred to as covariate shift, feature change, input drift)
characterizes the scenario where the distribution of one or more input variables
change over time (i.e.,  changes).
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This is seen in both Figure 3.a & 3.b above, where the distribution of features
has changed from time . In Figure 3.a, feature drift has occurred in a region that
directly affects the outcome of the learned classification boundary, causing
model performance to decrease (and thus making it classified as both feature
drift and real concept drift). However, feature drift can also occur where 
changes over time, but the changes do not affect the learned decision boundary.
This describes a specific type of feature drift called virtual drift, as seen in Figure
3.b. This is an important distinction because, as we see here, only the changes in

 that affect the prediction decision actually warrant a model adaptation.

For example, consider a clothing brand that is looking to recommend items for a
given customer as relevant or not relevant. Suppose this customer lives in a
tropical climate. Lightweight, breathable clothing items are relevant to them -
while heavy, cold weather apparel is not. In this scenario, the independent
features  are both the customer’s preferences (e.g., age, size, location) and
the brand’s product line. The dependent variable, , is the relevance of a
clothing item to the customer.

Figure 3: Forms of feature drift. The classification boundary depicted

at time (t+1) represents the previously learned relationship between

features and targets at time (t). Colors represent ground truth classes

of the data points at the specified time step.
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If the brand’s lead designer quits and is replaced, the brand’s design style will
naturally change as a result (i.e., change in ). However, warm weather
clothing still remains relevant for this customer, despite the stylistic differences

(i.e., no change in ). This scenario corresponds to a virtual drift.[4]

Suppose now that, due to a shift in brand strategy, the company alters their
product focus to sell mostly cold weather gear and fewer warm weather items,
but the designer (and style) stay the same. This scenario also corresponds to a
feature drift (Source 1); however, it’s one that does impact the decision
boundary (i.e., ). Therefore, this scenario is also categorized as Source 2
drift.

Source 2: Real Concept Drift

The second source of drift, called real concept drift (also commonly referred to
as actual drift, concept shift, conditional change), refers to changes in 
and signals that a previously learned relationship between features and targets
no longer holds true. Unlike feature drift, this type of drift will always cause a
drop in model performance.
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It’s important to note that real concept drift can happen either with or without a

change in .[5] This nuance is shown in Figure 4.a, where both the input
feature distributions and the learned decision boundary have changed in the
new time step. In contrast, Figure 4.b demonstrates a scenario where input
distributions remain constant, while the ground truth class labels have actually
evolved.

Continuing with our previous example, suppose that the customer moves from
their tropical paradise to the Alaskan tundra, while the clothing brand makes no
changes to their offerings or staff. In this case, the very meaning of “relevance”
flips, making cold weather gear relevant and warm weather clothing irrelevant.
This describes another example of real concept drift, but with no change in 

.

However, the real world is rarely ever this clean-cut, and oftentimes both
sources of drift are at play simultaneously. Let’s now imagine a situation where
the customer moves to a temperate climate with cold nights and warm days,

Figure 4: Forms of real concept drift. The classification boundary

depicted at time (t+1) represents the newly learned relationship between

features and targets at time (t+1). Colors represent ground truth

classes of the data points at the specified time step.
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and the company slightly alters their product mix towards cold weather gear.
Here, we observe changes in both  and , making it difficult to
attribute concept drift to any single source.

Additional Classifications

Both feature drift and real concept drift can be further classified based on
the rate at which the concept evolves. For instance, the drift could occur
abruptly, resulting in a quick change in the distribution. (Think of drifts
induced by a sensor or an equipment failure.) Such cases are considered
sudden concept drift. There are other instances where the drift occurs
slowly over time - like the drift induced by rising temperatures in the
atmosphere. These are deemed gradual concept drift. In addition, there
are also recurring concept drifts, which are patterns or trends that tend to
repeat themselves at intervals, and are commonly found in seasonal data.

What is a data stream?
Before moving on, let’s define some additional terminology that will be
mentioned throughout this report. To discuss the idea of concept drift in
production, we must consider dynamic data environments. For this reason, we
reference concept drift detection and adaptation with regard to data streams,
where instances arrive continuously and sequentially over time. Streaming data
is often generated on the fly - potentially at a fast and variable rate, and with
infinite range - making it a prime candidate for evolving data distributions.

Despite this, concept drift is not exclusive to data streams. And, in order to
frame a discussion involving both stream and batch contexts, concept drift
detection methods commonly employ the notion of sliding windows, or groups
of sequentially ordered observations.

P(X) P(y|X)



In general, one window contains the instances belonging to the most recent
known concept, which were used to train or update the deployed model, and
one window contains instances which may have suffered a concept drift. We
refer to these windows as the reference window and detection window,

respectively.[6]

Figure 5: Data streams are decomposed into windows of observations to

establish context upon which concept drift occurs.



With these definitions in mind, we see that real concept drift in a data stream
(Source 2) poses the main concern for production models, since it directly
impacts model performance. The most effective solution to address this issue
involves detecting when the learned relationship between features and targets
is no longer appropriate for incoming data, and then training a new model to
learn the novel concept. An adaptive workflow like this is shared among
common supervised methods like Drift Detection Method (DDM), Early Drift
Detection Method (EDDM), and ADaptive WINdowing (ADWIN). We describe this
workflow in Figure 6, below.

Framing the problem

Figure 6: General workflow of supervised drift detection methods that

use significant changes in performance metrics to signal concept drift.



In general, these techniques monitor a task-dependent performance metric like
accuracy, F-score, or precision/recall. If the metric of interest deviates from an
acceptable level (as determined during training evaluation on the reference
window), a drift is signaled.

The cumulative effect of this approach over the lifetime of a machine learning
system is highlighted in Figure 7. Initially, the system celebrates strong
performance because the model has learned from recent data. After some time,
accuracy declines as concepts evolve, until ultimately a metric threshold is
crossed, and drift is detected. System performance then realizes an immediate
boost after retraining, as the new concept is absorbed.

Despite the ample research and proven effectiveness of these supervised
methods, they all suffer from a shared, impractical assumption － that true
labels are instantaneously available after inference. In most use cases, the
immediate availability of true labels is infeasible for several reasons.

First, annotating data is expensive, in both cost and labor, as it often requires
hired domain expertise. The issue is described succinctly by the authors of On
the Reliable Detection of Concept Drift from Streaming Unlabeled Data:

Figure 7: Impact of supervised concept drift detection on machine

learning system performance over time.

https://arxiv.org/pdf/1704.00023.pdf


“To highlight the problem of label dependence, consider the task of detecting
hate speech from live tweets, using a classification system facing the Twitter
stream (estimated at 500M daily tweets). If 0.5% of the tweets are requested
to be labeled, using crowdsourcing websites such as Amazon’s Mechanical
Turk2, this would imply a daily expenditure of $50K (each worker paid $1 for
50 tweets), and a continuous availability of 350 crowdsourced workers
(assuming each can label 10 tweets per minute, and work for 12 hours/day),
every single day, for this particular task alone. The scale and velocity of
modern day data applications makes such dependence on labeled data a
practical and economic limitation.”

Second, in addition to label scarcity, verification latency - or the period between
the availability of an unlabeled test instance and the availability of its true label -

is application-dependent and often variable.[7] For example, it can take several
months for an act of credit card fraud to be reported (i.e., ground truth) from the
time the fraudulent transaction occurred. If F1 score is the only metric being
used to track model performance (and thus detect concept drift), there may be
several months of higher than normal fraudulent activity without any signal that
something is wrong.

Finally, some use cases operate in an extreme case of infinite verification
latency, where ground truth labels are impossible to ever obtain. Consider a
bank which uses machine learning to power its lending decisions. If a model
predicts a loan will default for a given applicant, the loan is never granted;
therefore, it can never be determined if the loan would have actually defaulted
or been repaid. Use cases like this demand an alternative solution.



Due to these limitations, there is a clear need for effective methods that can
detect real concept drift (Source 2) in an unsupervised manner. Unfortunately,
this proves to be an impossible task, as the only way to confirm a change in 

 with certainty is to have some access to ground truth labels - there is
no free lunch.

In the absence of labeled data, the best we can do is attempt to infer real
concept drift by detecting feature drift (Source 1). That is, we are interested in
quantifying visible changes in  and surmising that those changes
correspond to meaningful change in the classification boundary . Of
course, this approach is prone to error because as we’ve seen:

1. Not all changes in  are visible from , resulting in false
negative detections where real drift occurs but is not signaled.

2. Not all changes in  actually affect , resulting in overly
sensitive detectors that trigger costly false positive detections.

Inferring real concept drift in an unsupervised fashion thus becomes a delicate
balancing act, in order to minimize the number of false positive detections (and
therefore labels needed) while remaining sensitive enough to pick up on
meaningful changes in the feature space that likely contribute to a change in
concept.

Addressing the problem
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In comparison to recent research on supervised drift detectors, much less

attention has been paid to unsupervised methods.[8] However, detecting shifts
in data distributions is a well-explored field of data mining, with solutions
ranging from multiple hypothesis testing and novelty detection to discriminative
distance and algorithm-specific techniques. In our exploration, we focused on
methods that are model-agnostic and truly unsupervised, to ensure broad
applicability in practice. In this section, we present four methods for inferring
concept drift without labels, and use a binary classification task to frame the
discussion.

1. Statistical test for change in
feature space
The ultimate goal of feature drift detection is to determine if two distributions
are different. Therefore, the first and most basic approach to infer concept drift
applies a hypothesis test to flag if a statistically significant change has occurred
between the reference and detection windows for each feature in a given data
stream.

For continuous features, we use a two-sample Kolmogorov-Smirnov (KS) test,
which is a non-parametric hypothesis test used to check whether two samples
originate from the same distribution. For categorical features, we make use of a
Chi-Squared goodness of fit test.

Methods for inferring
concept drift

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test
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In the case of multivariate tabular data, we can test each feature independently
(while accounting for multiple tests) to arrive at an overall signal of drift or no-
drift, as seen in Figure 8. The Bonferroni test is a notable approach for correcting
multiple hypothesis tests - while making conservative assumptions about the
(in)dependence among them - to arrive at a final result.

In contrast to this feature-wise approach, we could also apply a multivariate
two-sample hypothesis test like the kernel-based technique called Maximum
Mean Discrepancy (MMD). MMD allows us to distinguish between two probability
distributions, based on the mean embeddings of those distributions. While this
method does side-step the need for multiple tests, the choice of kernel is critical
to ensuring its correctness, and a linear time complexity imposes a potential

bottleneck in streaming applications.[9]

High Dimensional Data

When it comes to high dimensional data, (e.g., images, text) best practices
for detecting drift with two sample tests are an area of active research.

Figure 8: Hypothesis tests are performed feature-wise when dealing with

multivariate tabular data. Correction is applied to the tests to arrive

at overall determination of significance.

https://en.wikipedia.org/wiki/Bonferroni_correction
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf


Recent work proposes combining dimensionality reduction techniques
(e.g., PCA, randomly initialized auto-encoders) with subsequent two-

sample testing.[10] The overall idea is that these dimensionality reduction
techniques yield either a uni- or multi-dimensional representation of the
data. We can then choose a suitable statistical test to apply to the reduced
data stream to detect drift.

While feature-wise and multivariate hypothesis testing is broadly applicable
across machine learning use cases, it has several limitations as a real concept
drift inference tool. Because these methods consider drift in each feature to be
equally important (despite p-value correction across tests), they are prone to
false positive detections. Imagine the case where several features in a
datastream exhibit drift, but none of them are of high importance to a classifier’s
decision-making process. It’s likely that the present drift will not actually impact
the learned decision boundary, despite the hypothesis test’s ringing alarm.

This limitation arises because we’ve excluded the classifier from the detection
process and are making decisions solely on the distribution characteristics of
incoming features - resulting in increased sensitivity to change and a high
number of false alarms.

2. Statistical test for change in
response variable
Unlike the previous method, where only the feature space is analyzed, our
second approach infers concept drift by tacitly involving the classifier in the
detection process, making change detection relevant to the prediction task at
hand. To do so, we apply a model that’s been trained on the reference window to
generate predicted class probabilities (a response distribution) for observations
in the detection window. Then, we use a k-fold procedure to obtain probability
estimates for the reference window.

K-fold Procedure

In the k-fold procedure, the entire dataset is sequentially divided into k
bands of samples. In the first iteration, the first k-1 bands serve as the



training set, to learn a model that is used to generate predictions over the
kth band of observations. This process is repeated k times where each
band functions as the test set exactly once, yielding a response distribution

for the entire reference window.[11]

With our two populations in hand, we can apply a Kolmogorov-Smirnov
hypothesis test to see if the response distributions between reference and
detection windows differ significantly. In effect, the trained model serves as a
dimensionality-reducing preprocessing step. It leverages its learned relationship
between features and targets (i.e., ) to generate a response distribution
that is sensitive to feature space changes that will likely affect the performance
of the model in question. If important features in the detection window have
drifted from those the model learned on, we would expect the classifier to
produce significantly different response distributions, as depicted in Figure 9.

P(y|X)

Figure 9: Example response distributions between reference and detection

windows for a binary classification task. The plot on the left shows

nearly identical distributions resulting from a case where feature drift

is not present, while the plot on the right depicts divergent

distributions.



Although it’s a step in the right direction, this method is still overly sensitive.
That’s because, by design, a KS test is responsive to changes across the entire
response distribution. But do we really care about changes in regions of high
confidence? For example, if the density shape between 0 and 0.25 confidence
level changes a bit, it doesn’t impact the classification outcome of those points,
because they’re still well below the 0.5 decision threshold. This leads us to the
next approach.

3. Statistical test for change in
margin density of response
variable
Rather than test for changes across the entire cumulative response distribution,
we can instead focus on just the regions of uncertainty around our decision
threshold, where slight variations in confidence lead to different classification
outcomes.

To do so, we must introduce a parameter that specifies a desired margin width
around the decision boundary, to define a region of uncertainty. Margin here is
the portion of the prediction space which is most vulnerable to misclassification.
[12] Then, for both windows, we classify each observation as in-margin or out-of-
margin, based on its predicted confidence score. We compare these categorical
populations between windows, using a Chi-square goodness of fit test to check
for significant changes in the margin density. The underlying assumption here is
that a significant change in the number of samples in the margin is indicative of
a drifting concept.



The impact of this approach is highlighted in Figure 10, above. On the left, we
see the case where a divergence exists towards the tail ends of the distribution,
but the rest of the probability space remains congruent. This example would fail
the KS test (described in Method 2), signaling a feature drift, and consequently
request costly new labels for retraining. However, because the divergence exists
far from the decision boundary, it would likely not have impacted the
classification results, making it a false positive detection. In contrast, the margin
density approach would tolerate this inconsequential change. Only when a
statistically significant divergence occurs inside the margin will Method 3 raise
an alarm, as shown in Figure 10 (on the right).

Introducing a margin of uncertainty to desensitize feature drift detection does
help reduce the number of false positive detections. However, there is still room
for improvement. Each method we have discussed so far relies on hypothesis
testing to signal drift. Unfortunately, the mere falsity of a null hypothesis doesn’t
say much about our window samples, other than that they don’t come from an
identical population. But do we really care if the populations are identical?

Figure 10: Response distributions that diverge only at tail ends do not

impact classification results (left), whereas changes of distribution

within the margin do (right). The decision boundary here corresponds to

a confidence of 0.5.



If our goal is to reduce the sensitivity of feature drift detections, we probably
care more about quantifying how different two populations are, which is
something that a statistical test cannot provide. A quantitative measure of
similarity affords us the flexibility to set our own threshold, depending on our
tolerance for error. In essence, we need a way to distinguish what level of
change is statistically significant from what is practically significant.

4. Detect change in margin density
of response distribution using a
learned threshold
Our final method uses a learned threshold to detect change in the margin
density of a response distribution. Building upon the previous two methods, we
first obtain a response distribution for each window, and introduce a margin to
classify predictions as in or out of the region of uncertainty. However, rather than
applying a Chi-square test (as in Method 3), we establish an expected value for
margin density based on the reference window.

This is accomplished during the k-fold procedure by calculating the percentage
of instances falling in margin, relative to the total instances in the window (i.e.,
margin density) for each fold. The cross-validation procedure produces a
population of  margin density values from which we can calculate a mean (

) and standard deviation ( ), providing a strong estimate of the
expected margin density value and an acceptable deviation.

These values are then used to signal change in the detection window based on a
desired level of sensitivity, . A practically significant change is signaled when
the margin density of the detection window differs by more than  standard
deviations from the expected margin density value, as seen in the equation
below.

By setting the expected margin density value from the population observed in
the reference window, we establish a baseline specific to the problem at hand.
Adding the sensitivity parameter offers control over the detection process.
Larger values of  will reduce the number of false positive detections, but
possibly at the cost of increasing false negatives - a decision that might make

k
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S
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sense when the cost/impact of a false negative is low. Inversely, lowering 
might be a good idea for critical applications, where the cost of a real drift could

be harmful if undetected.[13]
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To gain a deeper understanding of these unsupervised concept drift detection
methods, we needed to experiment. In particular, we aimed to understand the
tradeoff between false positive and false negative drift detections produced by
each of these methods over a machine learning system’s lifetime. To do so, we
designed an experimental setup - which consisted of an adaptive learning
workflow with a synthetic dataset - to simulate the lifecycle of a model in
production.

Inducing concept drift
Experimenting on production-related issues like concept drift is challenging.
Concept drift research is often performed on purely synthetic datasets, where
variables are randomly generated according to predefined rules to allow for
control over the type, timing, and magnitude of drift. However, these datasets do
not truly mimic the relationships present in real world data. In contrast, real
world datasets lack precise flags for the start and end of drifting concepts and
often include mixed drift types, making it difficult to cleanly evaluate drift
detection methods.

For our experimentation, we decided to induce drift into a real dataset, as it
allowed us to retain genuine data properties while ensuring significant drift was
actually present. To do so, we applied an extended version of the drift induction
process that was used by the authors of On the Reliable Detection of Concept
Drift from Streaming Unlabeled Data to the Covertype Data Set from the UCI
Machine Learning Repository . Before inducing drift, the dataset was reduced to
a binary classification problem, by considering only the two most populous
classes, and all features were normalized in the range of [0,1]. Additionally, all
soil type variables were dropped, to simplify the problem. This resulted in a
dataset with 14 features, one binary target variable, and ~495,000
observations.

The drift induction process works by first shuffling the entire dataset in an
attempt to remove any existing concept drift. We then create changepoints in

Experiments
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the data stream, by selecting a subset of features and randomly rotating their
values for all examples after a given changepoint (the equivalent of randomly
swapping columns). This basic approach ensures that feature drifts are induced,
while also maintaining the original properties of the dataset.

We created three changepoints evenly spaced across the entire dataset. For the
first changepoint, we selected the three most impactful features to rotate
(determined by ranking features based on their impurity-based feature
importance). For the second changepoint, we selected the fourth to tenth most
important ranked features to rotate. And finally, we selected the remaining three
least important features for the third changepoint. At each changepoint, drift
was forward chained through the remainder of the dataset to provide
consistency across concepts. This process resulted in four unique “concepts”
(~124k observations each) with varying degrees of drift. The entire data
preparation and drift induction process we followed can be referenced in this
notebook.

Experimental Setup
With a drifting dataset in hand, we then implemented a rudimentary adaptive
learning workflow, in order to evaluate the proposed detection methods
(discussed above) in a lifecycle context. The workflow consisted of two sliding
windows (reference and detection) of fixed size passing over the drift induced
datastream, where the decision to retrain at each timestep is made by the given
drift detection method.

https://github.com/fastforwardlabs/concept-drift/blob/main/notebooks/Covertype_EDA.ipynb


The workflow described in Figure 11 ran until predictions were generated for
every observation in the data set. Throughout each experiment, we recorded the
incremental accuracy of predictions on the datastream, as well as the number of
requested true labels. Incremental accuracy provides a cumulative measure of
performance of the classification system over the entire datastream, since
several different “deployed” models likely exist. The number of requested true
labels corresponds directly to the number of drift detections, and thus to the
number of retrainings demanded.

In addition to accuracy and number of retrainings, we also captured if a real
concept drift occurred at each window timestep (irrespective of what the drift
detection method indicates). Of course, this is a luxury we are only afforded in
an experimental setting because we have access to all ground truth labels,
which allows us to evaluate our various drift detection methods. This source of
truth is determined using a k-fold approach on the reference window, similar to

Figure 11: The adaptive learning workflow used to evaluate various

concept drift detection methods.



that used in Method 4 above, except rather than gathering a population of k
margin density values, we collect a population of accuracy measures to
establish an expected accuracy and acceptable deviation. If the accuracy on the
detection window falls outside three standard deviations of the expected
accuracy, we conclude that a real concept drift occurred (i.e., significant change
in ). This approach for quantifying real concept drift (versus just using
the three drift induced changepoints) allows us to account for unknown drifts
that may exist in the underlying data, despite our attempt at removing it via
random shuffle. This ground truth indicator serves as the basis for classifying
drift detections as false positives or false negatives.

Using this experimental setup, we evaluated detection methods 2, 3, and 4 from
above. We compared the results against a baseline and topline scenario. The
baseline case is simply a classifier that never adapts to drift (i.e., it is trained
only on the initial reference window and used to evaluate on the entire
remaining datastream). The topline scenario greedily retrains a new model at
each window timestep.

All our experiments shared a common set of parameters - including model type
(random forest classifier), model hyperparameters (n_estimators=5,
max_depth=5) , and window size (35,000 observations). The window size and
model hyperparameters were empirically selected by finding a combination that
did not result in overfitting between reference and detection sets, while allowing
multiple window timesteps to fit within each induced concept. Our entire set of
experiments and supporting code can be found here.

Results
The cumulative accuracy of each drift detection experiment is visualized and
summarized over the full datastream in Figure 12, below. Here, the vertical lines
represent the equally spaced changepoints where drift was systematically
induced in the datastream.

P(y|X)
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By observing the baseline case (blue line) where no model retraining occurs
after the first window, we see a steep decline in accuracy immediately after the
first changepoint. This makes sense because the changepoint introduces a
severe drift (i.e., rotation of most important features) and, without adaptation,
the model fails to reflect the new concepts - resulting in a drop of ~18%
accuracy from initial training to the end of the data stream.

In contrast, we see that by retraining at each window timestep, the topline case
(orange line overlapping with green line) is able to recover from each concept
change, resulting in a cumulative accuracy drop of just ~2% over the
datastream. Of course, this comes at the cost of 13 retrainings (or 99% of the
total labels requested) where only three actually experienced concept drift. This
results in 10 false positives.

Figure 12: Summary of experimental results of six drift detection

methods used to signal retraining in an adaptive learning simulation.

Vertical lines represent the equally spaced changepoints where drift was

systematically induced in the datastream. Note that the Topline (orange

line) and Method 2 (green line) experiment lines overlap, so only green

is visible.



As mentioned above, we see that Method 2 (KS test on response distribution)
produces identical results to our topline case; the test signals a drift at every
window timestep. Intuitively, this does not make sense, because there are three
distinct windows (of 35,000 records each) within each induced concept - that is,
three opportunities for the model to learn and adapt to each new concept. This
points to the major flaw of Method 2: comparing entire response distributions
with a KS test proves to be overly sensitive to small differences that may
actually be deemed acceptable in practice (thus prompting a request for
unnecessary retraining).

This is further evidenced by observing the results for Method 3 (Chi-squared test
on response margin) where only 10 drifts were signaled - while still capturing all
six actual drift occurrences, but still producing four false positive detections. In
this case, by statistically testing for significant changes inside of a defined
margin vs. the entire distribution, we required just 77% of the total labels while
maintaining a cumulative accuracy within 1% point of the topline case, and did
not sacrifice any false negative (missed) detections.

Finally, we see that Method 4 (using a learned threshold of margin density)
relaxes drift detections even further. With the sensitivity value set to one, we
observe only five drift detections demanding just 42% of the total labels, while
producing a cumulative accuracy just 2% points lower than the topline case.
However, by stepping away from statistical tests, we notice that this experiment
actually misses three windows of actual drift (false negatives). Increasing the
sensitivity parameter to a value of two exacerbates this problem, decreasing the
cumulative accuracy even further, as seven actual drift occurrences are missed.

Limitations
As mentioned previously, experimenting with concept drift is challenging,
because it requires us to simulate a production environment and make
assumptions in an attempt to emulate it. One assumption that we made while
designing our dataset is that randomly shuffling all records upfront would
eliminate existing drift and provide a clean slate upon which we could introduce
controlled drift. This false assumption was brought to light as we saw more than
three actual drift occurrences in several of the experiments. Because we chose
to define real drifts by comparing change in accuracy between reference and
detection windows, we saw an unequal number of “actual drifts” across
experiments, making head-to-head comparison of results difficult.



Additionally, we chose to implement non-overlapping, fixed-size windows that
advance in full for all experiments. Many drift detection methods today operate
in an incremental or online fashion where detection windows are advanced for
each incoming observation rather than batches. This strategy eliminates the
period of inactivity until a new detection window reaches the minimum number
of samples, and may decrease the delay in response time for sudden drift
detections.

Another limitation is seen in our rudimentary retraining scheme, where labels
are requested for the entire detection window upon a drift signal and the
existing model architecture is retrained in place. In practice, there are a variety
of retraining options - like using all available historical data, weighting newer
observations, dropping outdated records, or requesting just a portion of labels
from the newest window. In addition, naive retraining of the same model with

new data might not be enough to adapt to an evolved concept.[14] A manually
selected model architecture may perform better upon each retraining, which
points to another limiting assumption of our experimental setup.



So far we have discussed and experimented with approaches for dealing with
concept drift when the ground truth of the newly available data instances isn’t
readily available. While we covered methods that are model agnostic and truly
unsupervised, detecting concept drift in practice is not a straightforward task.
As noted by the researchers of Learning under Concept Drift: A Review, handling
concept drift is generally coupled with other machine learning problems. In this
section, we cover a few of these overlapping issues along with some
considerations when designing a drift detection strategy.

Ethics
It’s impossible to design a machine learning system and know everything about
the domain upfront. As we’ve seen, concept drift occurs by default, as a result of
static models operating in dynamic environments. Therefore, deployed models
will naturally have unintended consequences. For this reason, it’s imperative
that teams plan for uncertainty post-deployment and establish robust
monitoring and detection processes , so as to understand when something has
gone wrong and take corrective action.

However, the act of monitoring a feature or metric just to “check the box” is not
enough. Blindly optimizing and maintaining a poorly selected set of metrics will
result in far from optimal outcomes. This is because metric optimization often
leads to manipulation, gaming, and a focus on short-term quantities at the
expense of longer-term concerns. When developing a post-production strategy,
it’s important to use a slate of metrics to gain a fuller picture of a model’s true
impact, combine metrics with qualitative accounts, and involve a range of
stakeholders - including those who will be impacted downstream by the model’s

decisions.[15] Planning for and monitoring a model’s impact on a wider set of
concerns than just predictive performance adds an additional layer of
complexity to the already difficult task of production machine learning - but it’s
a requirement, not an option.

Considerations

https://arxiv.org/pdf/2004.05785.pdf


Other Prediction Tasks
Up until now, all of the methods discussed for inferring drift have been in the
context of binary classification. But how can these approaches be extended to
other tasks, like multiclass classification and regression?

At the core of our approaches, we are simply using a trained model to produce a
distribution of uncertainty and then comparing that distribution between
reference and detection windows. Therefore, we can apply this same idea to
other tasks by reformulating our definition of uncertainty. In the binary
classification task, uncertainty exists as the difference between the two class
probabilities. In a multiclass classification task, uncertainty could be defined as
the difference between the top two class probabilities. Similarly, for regression
tasks, the notion of uncertainty could take the form of absolute error of each
prediction.

Class Imbalance
The common issue of class imbalance is exacerbated when it comes to drift
detection. Class imbalance occurs when the proportion of data instances
belonging to each class varies, causing certain classes to be underrepresented.
It is usually the underrepresented classes in such situations that end up having
higher misclassifications. Detecting drift between populations with imbalanced
classes is complicated, and becomes more challenging when the data between
windows cannot be stored due to memory issues. As such, approaches that
cater to both concept drift and class imbalance in data streams are relatively

less studied.[16] That said, CDS (Concept Drift with SMOTE (Synthetic Minority
class Oversampling Technique)) is one of the more recent batch-based
incremental learning algorithms that strategically uses the minority class data to

tackle this problem.[17]

Another related problem that is largely underexplored is dealing with multi-label
classification, where a particular data instance could be associated with one or
more labels. For example, a news article may have overlapping classes like
“politics,” “environment,” and “energy.” Multi-label data streams contain
independent relationships for each label - where each concept is likely to have
its own drift pattern that may drift asynchronously from its peers. In addition,
label proportions may not be consistent across detection windows. To address



these challenges, a notable approach[18] associates each label with two fixed
size instance-windows, one for positive examples and the other for negative
examples for the training data. The size of the positive window is a user-
specified parameter, and it should be large enough to learn an accurate model,
but small enough to reduce the probability of drift within the window. The
number of negative examples in the negative window is determined based on
the ratio of the number of positive examples to another user-specified
parameter: distribution ratio. This parameter plays the role of balancing the
distribution of positive and negative examples in the union of the two windows
and ranges typically from 0.3 to 0.7. The approach allows it to oversample the
positive and undersample the negative examples for all labels. They further
build and use k-nearest neighbor (k-NN) classifiers to determine the label of an
unlabeled test instance. Normally a k-NN classifier outputs a class label based
on whether the probability of it belonging to the positive class is >= 0.5. This
default behavior is an improper choice when it comes to imbalanced classes,
and the authors instead propose a batch-specific thresholding approach to
combat that.

Active Learning
Active learning is a set of machine learning techniques that reduces the number
of labeled examples required to train a model. In settings where the labeled
examples are available only initially or are scarce, active learning approaches
utilize these labels to build an initial model, and then uses this model to request
labels for data points (from a human) that the model finds hard to predict on. A
scenario where the unlabeled data stream is drifting could pose additional
challenges. For instance, active learning strategies that request labels for the
most uncertain instances would typically concentrate around the decision
boundary. Changes that occur further from the boundary may be missed, and
models may fail to adapt. Some solutions to effectively tackle such challenges
include learning strategies that are guided by drift detection to save labeling

costs for difficult and evolving instances.[19][20]

Semi-supervised Learning
Semi-supervised and transductive learning techniques leverage both labeled
and unlabeled examples to learn more generalized models when limited labeled
data is available for training. Because this technique naturally learns from



unlabeled data, it may be assumed that models of this type can easily track
drifting concepts. That is not the case, however, because with concept drift,
training data and test data are generated from different underlying distributions.
Due to this unique learning paradigm, there have been many new developments
specific to semi-supervised and transductive learning in the presence of concept
drift. For instance, the weight estimation algorithm (an ensemble-based

classifier approach[21]) uses unlabeled test data along with a set of mixture
models to adjust classifier voting weights. The approach helps detect gradual or
incremental drifts. There is also the COMPOSE (COMPacted Object Sample
Extraction) approach, which can handle multi-class data, including the scenario

of new classes or new subpopulations for gradual drift detection.[22])

Big Data
Data in big data streaming environments is often generated at a fast rate in large
quantities, and is highly volatile - a scenario prime for drifting concepts. Due to
the high throughput nature, it may not always be feasible to capture, store, and
process all the data. This complication has led to the development of scalable
and parallel algorithmic implementations that only need one pass through the
data, and thus train and adapt to concept drifts in real-time scenarios. For

instance, the Online MapReduce Drift Detection Method (OMR-DDM)[23]) detects
drift by the use of the error rate of a collection of classifiers executed

concurrently. Approaches like Micro-Cluster Nearest Neighbor (MC-NN)[24]) do
not need data to reside in memory, are processed incrementally, and adapt to
concept drifts by monitoring classification error.



As we’ve learned, maintaining a static representation of an ever-changing
environment is challenging, and requires diligent performance monitoring to
signal when a machine learning model is no longer suited for its original task.
This issue becomes even more difficult when the cost or availability of ground
truth labels make performance-based drift detection methods infeasible －
which is often the case in real world applications.

In this scenario, teams must monitor and detect changes purely from
independent variables as a means to infer concept drift. Unfortunately,
monitoring changes in input distributions produces many false positive
detections, because not all changes in the feature space of a population actually
correspond to a meaningful drift in relation to the target variable.

In this report, we presented four ways to infer concept drift in an unsupervised
manner, with the goal of reducing false positive drift detections. We reported
experimental results comparing and contrasting the nuances of each method,
and conclude that the best approach for detecting drift without labels will
depend on your specific application’s tolerance for error.

We hope this report has brought to light a few practical challenges associated
with production machine learning, and we look forward to continued research in
this space!
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